
Abstract.- Aerial surveys de- 
signed to detect trends in the abun- 
dance of harbor porpoise Phocoaa 
p h o c o m  were conducted each au- 
tumn, 1986 through 1990. The num- 
ber of porpoise seen per kilometer of 
survey effort was used as an index 
of abundance. Based on these sur- 
veys, an analysis of covariance was 
used to model porpoise abundance. 
Year was treated as a covariate, and 
factors which affected sighting rates 
were included as categorical vari- 
ables. No significant changes were 
seen in the abundance of porpoise 
over the five survey years. Monte 
Carlo simulations were performed to 
determine the power of the ANCOVA 
to detect trends in abundance. We 
conclude that the ability to detect 
trends is poor if traditional levels of 
statistical significance (a = 0.05) are 
used. A larger u-error may be appro- 
priate in the management context of 
this species and increases the power 
to detect trends. Additional survey 
years similarly improve the power to 
detect trends. Based on the results 
of the simulations, we suggest that 
power should be defined to include 
only the detection of the correct 
trend when two-tailed tests are 
employed. 
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Harbor porpoise Phocoena phocoena 
are caught incidentally during halibut 
fishing with gillnets along the central 
California coast (Diamond and Hanan 
1986; Hanan e t  al. 1986, 1987; Bar- 
low 1987; Barlow and Hanan 1990). 
To assess the potential impact of this 
fishery mortality, ship and aerial sur- 
veys have been used to  estimate the 
abundance of harbor porpoise along 
the coast of California, Oregon, and 
Washington (Barlow 1988, Barlow e t  
al. 1988). These authors showed that 
although aircraft can be used to sur- 
vey a large area very quickly, abun- 
dance estimates from aerial surveys 
must be multiplied by a very large 
and uncertain correction factor to  
account for the majority of animals 
that  will be underwater at any given 
instant. For this reason, ship surveys 
were concluded to be preferable for 
estimating absolute porpoise abun- 
dance. 

The requirements are, however, 
less stringent if the only goal is to  
detect trends in the abundance of 
porpoise over time, rather than de- 
termining absolute abundance. The 
ability of aircraft to cover great  dis- 
tances relatively quickly and inexpen- 
sively makes them a logical platform 
for such surveys. If the fraction of 

animals detected from the air does 
not change over time, the correction 
factor becomes irrelevant, and in- 
dices of relative abundance can be 
used in place of absolute abundance 
measures. 

We describe a series of five aerial 
surveys for harbor porpoise con- 
ducted in central California during 
autumn of 1986, 1987, 1988, 1989, 
and 1990. These surveys were de- 
signed specifically to detect changes 
in porpoise abundance. We used twin- 
engine aircraft to fly predetermined 
transect lines which zigzagged up the 
coast between Point Conception and 
the mouth of the Russian River (Fig. 
1). Line transect methods were used 
with one observer on each side of the 
aircraft and a belly-port observer. A 
fourth person recorded information 
pertaining to sightings of porpoises 
and sighting conditions. Each year 
within the survey period, the transect 
lines were repeated 3-7 times, de- 
pending on weather conditions. 

The number of porpoise seen per 
kilometer of search effort was used 
as a measure of relative abundance. 
A stepwise analysis of covariance 
procedure (ANCOVA) with year as 
the covariate was used to identify the 
best model describing porpoise seen 
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Flgure 1 
Flight transects for aerial survey of harbor porpoise in cen- 
tral California, 1986-90. Transect 7 was combined with 
transect 8 after 1986 and is not shown. 

per kilometer. Standard ANCOVA F-ratio tests were 
applied to determine whether a significant trend with 
year is present. Monte Carlo methods were used to  
determine the power of this test to detect known trends 
in abundance. 

Methods 

Field methods 
The surveys were established to monitor changes in 
abundance within the range of porpoise/gillnet fishery 
interactions (Point Conception to Russian River, Cali- 
fornia). Surveys were started only when there was a 
good likelihood of completing at least half of the survey 
(Point Conception to Monterey, or  Monterey to  Rus- 
sian River) under good weather conditions. They were 
halted when viewing conditions deteriorated below ac- 
ceptable levels (sea state higher than Beaufort 4 or 5, 
excessive dark cloud cover, rain, or fog). 

A series of predetermined locations marking the 
beginning and end of each transect was entered into 
the aircraft’s LORAN C navigational receiver to give 

the pilot a course to follow. The transects zigzagged 
in a generally northward progression between shore 
and roughly the 50-fathom (91-m) contour (Fig. 1). 
Sightings at the endpoint of a transect were very rare, 
and duplication at the start of the next transect did not 
occur. The transect lengths ranged from 5.2 to 44.8km 
and averaged 24.8km. The aircraft maintained an 
altitude of approximately 213m and speeds of 90-100 
knots (167-185km/hour). To reduce sun glare, surveys 
were conducted only from south to  north. 

The surveys were flown in a twin-engine, high-wing, 
seven-passenger aircraft with the rear seat removed 
(Partenavia P68). Two observers sat behind the pilot 
and copilot seats and looked out the side windows; a 
third observer (belly observer) lay on the floor on 
hisher  stomach just behind the right-side observer’s 
seat and surveyed the water below the airplane through 
a 25 x 30-cm rectangular viewing port. Starting in 
1988, the side windows were fitted with Plexiglas 
bubble-type windows, allowing the side observers to see 
from the horizon to directly under the plane. This 
created an overlap with the belly observer’s field of 
view; however, this did not result in double counting 
because the observers were in constant communication 
and discussed all possible sighting duplicates as they 
occurred. 

The data recorder sat in the copilot position and 
recorded flight information, including location (latitude 
and longitude), time, weather (TO cloud cover, Beaufort 
sea state, and sun position), viewing conditions, and 
porpoise sighting information. The data recorder en- 
tered weather and viewing conditions a t  the start of 
each transect and whenever conditions changed. Each 
observer subjectively evaluated viewing conditions as 
excellent, good, poor or “off effort,” depending on 
estimated viewing depth into the water, sun glare, and 
sea state. To simplify the recording procedure and 
enhance accuracy of the data, a lap-top computer con- 
nected to the LORAN C navigational receiver replaced 
the hand-written flight log during the 1988-90 surveys. 

The pilot, recorder, and observers communicated 
through headsets and voice-activated microphones. All 
communication was recorded on a central tape re- 
corder. Additionally, each observer used a hand-held 
tape recorder for storage of individual sighting infor- 
mation. The two side observers used hand-held in- 
clinometers to measure declination angles in degrees 
to  the animals sighted. Due to space limitations, the 
belly observer could not use an inclinometer and 
estimated angles using marks applied to the viewing 
port. The observers changed positions approximately 
every 1-1.5 hours and between flights. 

The observers actively searched (were “on effort”) 
from start  to finish of a transect, except when circling 
or when they declared themselves “off effort” because 
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of poor sighting conditions. The pilot circled on por- 
poise sightings if there was any question about species 
identification or number of porpoise. Additional sight- 
ings made while circling were recorded as “off effort” 
sightings and were not included in the analyses. 

During the first survey year (1986), observers re- 
ported all marine mammals sighted. However, the 
large number of California sea lion sightings took a 
disproportionate amount of time, so only harbor por- 
poise were recorded in 1987-90. Following the surveys, 
the data in the flight log or computer were checked for 
accuracy and, if needed, compared with the tape 
recordings. The data were transferred into micro- 
computer databases for summary and analysis. 

Analytlcal methods 

Individual flight segments during which all sighting 
conditions were constant were combined to measure 
porpoise per kilometer in relation to each of the sight- 
ing variables. These variables included Beaufort sea 
state, cloud cover, viewing condition, individual ob- 
servers, and an  a posteriori geographic subdivision 
chosen on the basis of apparent porpoise abundance: 
south (low abundance) and north (high abundance) 
(Fig. 2). This subdivision was created to correct for 
slight interannual differences in survey effort for high- 
and low-density areas, caused by bad weather. 

Cloud cover was recorded as a percentage and later 
coded into the categories “clear” (0-24%) and “cloudy” 
(25-100%). Sighting efficiency and sample sizes de- 
creased dramatically when Beaufort sea state was 
higher than 3, so only segments with Beaufort 0-3 
were used. Beaufort 0 was combined with Beaufort 
1 because there was very little survey effort at 
Beaufort 0. 

The data were fitted to an analysis of covariance 
(ANCOVA) model of the form: 

P = p + “1 + a2 + . . . + d ( y - y )  + E (1) 

where P represents the log-transformed (log,) value of 
porpoise per kilometer, p is the mean value of P, the 
(I represent qualitative factors influencing observed 
porpoise abundance, d represents the coefficient for the 
covariate year (y), 7 is the mean value of y, and E is 
a random error term. Such an additive model for 
logarithmic values is equivalent to  a model describing 
multiplicative effects on the untransformed number of 
porpoise seen. This was deemed appropriate because 
sighting conditions affect the fraction of porpoise seen 
but not the absolute density of porpoise present. 
Because of the logarithmic transformation, a linear 
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Porpoise seen per kilometer in transects 1 through 26 for 
1986-90 surveys (including Beaufort sea states 0-3 and clear 
skies only). For the analysis, transects were divided into two 
areas at Point Pinos (between transects 14 and 15): south (low 
abundance) and north (high abundance). 

increase or decrease in the covariate would be inter- 
preted as an exponential increase or decrease in por- 
poise abundance. The constant 0.001 was added to each 
value before transformation to avoid trying to take the 
logarithm of zero. This logarithmic transformation also 
made the data more nearly normal (Fig. 3). 

I t  was not possible to include all potential variables 
in the model selection procedure, because this would 
have caused overstratification of the data. Individual 
observer effects were excluded because not all ob- 
servers collected data each year, resulting in a large 
number of missing cell values. Viewing condition was 
also excluded because i t  is somewhat redundant with 
sea state and cloud cover and i t  is more subjective. 
Previous nonparametric tests of individual observer 
effects and viewing conditions with three years of data 
(Forney e t  al. 1989) yielded no significant differences 
in observed numbers of porpoise per kilometer. 

In  the ANCOVA, the data were weighted by the 
number of kilometers flown to correct for variability 
due to unequal sample sizes. A stepwise selection pro- 
cedure with the SAS procedure GLM (Joyner 1985) was 
used to determine the best model for the observed data. 
At  each step, all appropriate parameters and inter- 
action effects were tested individually. The most sig- 
nificant parameter was added to the model, based on 
a criterion level of a = 0.05. Each included variable was 
retested for significance at each subsequent step of the 
procedure. 
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Figure 3 
Distribution of observed porpoisekm values (A), and log 
transformed porpoisekm values (B) for five years of aerial 
survey data. The transformation was ln(x + 0.001), where x 
is the observed number of porpoisekm. 

Simulation methods 

Once the  best model had been selected (see Results), 
Monte Carlo simulations were performed to  determine 
the  power of the ANCOVA to  correctly detect a given 
trend in porpoise abundance. The analysis of power was 
divided into two main steps: (1) Simulations without 
a trend, to determine whether the procedure can create 
and correctly analyze simulated data; and (2) simula- 
tions with trends, to estimate how often the procedure 
correctly identifies a known trend in harbor porpoise 
abundance. Annual changes of f 5% and f 10% were 
tested over periods of five, six, eight, and ten  years. 

The random data  se t s  were generated using the 
parameters and error  structure obtained for the actual 
da ta  from the  best model (see Results). First ,  the  ex- 
pected logarithmic value of porpoise per kilometer for 

Table 1 
Average number of harbor porpoise seen per kilometer of 
search effort for 1986-90 aerial surveys. Numbers of porpoise 
seen per number of kilometers surveyed are given in paren- 
theses. Categories are defined in the text. Overall mean 
number of porpoise per kilometer is 0.047 (796116948). 

Beaufort 
Cloud 

Area cover 0,1 2 3 

South Clear 0.036 

Cloudy 0.030 
(75/2075) 

(31/1026) 

North Clear 0.163 

Cloudy 0.058 
(170/1042) 

(30/521) 

0.024 
(5412248) 
0.015 

(151974) 

0.106 
(229/2165) 

0.039 
(59/1530) 

0.013 
(2411918) 

0.006 
(31518) 

0.046 
(84/1814) 

0.020 
(22/1117) 

each combination of conditions was calculated from the 
fitted parameters. A random er ror  t e rm for each ex- 
pected value was then drawn from a normal distribu- 
tion with a mean of zero and standard e r ror  from the 
ANCOVA results of the best model. To allow weighted 
analysis of the simulated data, this error  t e rm was 
weighted inversely, i.e., multiplied times m, 
where w is the  number of kilometers flown under the 
given conditions. A set  of 60 values for w, one for each 
of the 60 simulated porpoise-per-kilometer values, was 
obtained for each year by randomly selecting the ac- 
tual numbers of kilometers flown from one of the five 
survey years. Complete yearly sets were chosen rather 
than individual values to  avoid unlikely combinations 
of kilometers flown. 

A yearly t rend was  incorporated into the  simulation 
data by multiplying the calculated value of porpoise per 
kilometer times a factor representing the  desired ex- 
ponential change in porpoise abundance. To make the 
simulated da ta  more like potential real data, all values 
were rounded to  yield only integer values of porpoise 
over the given number of kilometers flown. In addition, 
to  prevent unfeasible values of porpoise per kilometer, 
a new error term was drawn if the original one resulted 
in a value which was negative or  grea te r  than 0.4 por- 
poise per  kilometer. The highest value observed in 
1986-90 was 0.24 porpoise per kilometer; multiplying 
this value times the  maximum simulated increasing 
t rend yields an  upper limit of approximately 0.4 por- 
poise per  kilometer. Less  than 5% of all error  terms 
were redrawn in the  simulations. 
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Table 2 
Stepwise model selection procedure for 1986-90 aerial survey data. Parameters marked with an asterisk indicate variables included 
in the model at each step. P = In(porpoise/km + 0,001); p = mean value of P; BF = Beaufort sea state; AR = area; CL = cloud 
cover; YR = year; an x between letters indicates an interaction effect. 

STEP 1 2 3 4 
Base model P = p  P=p+AR P = p  +AR + CL P = p  + AR + CL + BF 

P-values for tested variables BF: 0.0587 BF: 0.0079 ‘BF: 0.0016 YR 0.8535 
‘AR: 0.0001 ‘CL: 0.0021 YR 0.5865 BF x AR: 0.8491 
CL: 0.0256 YR: 0.9628 CLxAR 0.3399 BFx CL: 0.8378 
YR 0.9258 CLxAR 0.3875 

I 

Survey results 

A total of 16,948km of survey effort during 1986-90 
resulted in 431 sightings, representing a total of 796 
harbor porpoise. The overall mean number of porpoise 
per kilometer was 0.047. The average values of por- 
poise per kilometer over the five years a re  listed in 
Table 1 for different sighting conditions and areas. 
Mean group size was 1.85 porpoise, with a range of 
1-10 and median 1. 

The model 

The following model provided the best fit to the ob- 
served logarithmic estimates of porpoise per kilometer: 

P = Cc + agi + acj + a& + Ei,j ,k (2) 

where P = log, of [(porpoisekm) + 0.0011, 
p = mean value of P, 

agi = effect of Beaufort sea state i on P, 
acj = effect of cloud cover j on P, 

@Ak = effect of area k on P, 
q j , k  = normally distributed error with a mean 

of zero. 

The model selection procedure is outlined in Table 
2. None of the included variables lost significance and 
subsequently had to be dropped after inclusion of other 
variables. The yearly trend was not significant, so the 
model is essentially reduced to an analysis of variance 
(ANOVA) model. The results of the complete ANCOVA 
model testing for a yearly trend in the 1986-90 har- 
bor porpoise data are  shown in Table 3. The effects of 
area, cloud cover, and Beaufort sea state were signifi- 
cant (P<O.OOOl, P<0.0006, and P<0.0021, respective- 
ly), the yearly trend was not (P = 0.8535). None of the 
interaction effects were significant. The parameter 

Table 3 
Results of the weighted analysis of covariance 

Source 

Model 
Area 
Cloud cover 
Beaufort 
Year 

Error 

df 

5 
1 
1 
2 
1 

54 

~ 

Sum of 
squares 

15397 
9494 
3927 
4095 

10 

15900 

Mean 
square 

3079 
9494 
3927 
2047 

10 

294 

F 
value 

10.46 
32.24 
13.34 
6.95 
0.03 

Prob. 
>F 

0.0001 
0.0001 
0.0006 
0.0021 
0.8535 

~ 

Table 4 
Parameter estimates from (A) the ANCOVA testing year, and 
(B) the ‘best’ model (ANOVA) chosen for the simulations. Stan- 
dard errors are given in parentheses. 

Parameter (A) (B) 

p Mean 
agl Beaufort 0&1 
agp Beaufort 2 
aB3 Beaufort 3 
aAl Area 1 (South) 
aA2 Area 2 (North) 
uc, Clear skies 
acz Cloudy skies 
d Year 

-2.1496 (0.3288) 
0.0000 - 

-0.0838 (0.3304) 
-1.1344 (0.3516) 
- 1.5338 (0.2701) 

0.0000 - 
0.0000 - 

- 1.0377 (0.2841) 
+0.0182 (0.0982) 

-2.1454 (0.3251) 
0.0000 - 

-0.0883 (0.3266) 
-1.1257 (0.3453) 
-1.5360 (0.2674) 

0.0000 - 
0.0000 - 

- 1.0454 (0.2787) 
- - 

estimates for the models with and without year are  
displayed in Table 4. 

Analysis of power to detect trends 

No trend slmulations (d = 0) To determine the reli- 
ability of the simulation procedure to  model trends in 
porpoise abundance, 500 simulated data sets with no 
yearly trend were created for five, six, eight, and ten 
survey years, using parameter set (B) in Table 4. The 
simulated data sets were analyzed using the full 
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Table 5 
Actual u-errors and fractions of positive and negative covariate 
coefficient estimates (d) for ANCOVA of 500 random data sets 
for five, six, eight, and ten simulated survey years. 

NO. 70 Actual u-errors for Fractions 
of annual of f d 

years change a =0.05 u =0.10 u =0.20 values 

5 none 0.05 0.10 0.20 0.48/0.52 
6 none 0.06 0.11 0.21 0.54/0.46 
8 none 0.04 0.10 0.20 0.4910.51 

10 none 0.07 0.12 0.23 0.5310.47 

ANCOVA model with a null hypothesis of no trend in 
abundance. The a-error (Type I error) is the fraction 
of simulations which falsely detected a trend. 

For all four simulations, the resulting a-errors were 
close to the theoretical ones (Table 5). The average root 
mean-square-error term obtained for these data sets 
(16.63) was also close to the error for the actual data 
(17.01). The estimates of the covariate for year (d) in 
the simulated data were approximately normally 
distributed with a zero mean, as expected (Fig. 4). This 
confirms that the simulation procedures do not intro- 
duce substantial bias into the data or error structure. 

Simulations with trends (d fOJ  To analyze the power 
of this procedure to detect given trends, random data 
sets spanning five, six, eight, and ten years were 
created with artificial changes in abundance of f 5% 
and f 10% per year. All other parameters were taken 
from Table 4, set (B), as above. For  each combination 
of survey years and trend, 500 data sets were created 
and analyzed with the ANCOVA procedure. 

In each simulation, a fraction of the analyses did not 
detect a trend: this represents the 8-error (Type I1 
error). A much smaller fraction detected a trend in the 
opposite direction of the true trend. The latter presents 
a special case (dilemma), and we have termed this type 
of error y-error (Type 111, cf. Carmer 1976). Figure 5 
graphically illustrates a, 8, and y for a situation where 
an  increasing trend is occurring and being tested 
against the null hypothesis in a two-tailed test (in a one- 
tailed test, y is zero). The three types of errors are inter- 
dependent: as a increases (i.e., the  bars in Figure 5 
move closer to zero), 8 decreases, and y increases. 

Power has been defined as the probability of correctly 
rejecting the null hypothesis when i t  is false, which 
numerically is 1 - 8 (Rotenberry and Wiens 1985, 
Peterman 199Oab). However, this definition does not 
address the error associated with accepting a false 
alternate hypothesis (y). In the case of trend analysis, 
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Figure 4 
Distribution of covariate estimates (6)  representing yearly 
change in abundance of harbor porpoise (from ANCOVA) for 
500 simulations of five survey years with no annual trend in 
abundance. 

this is the probability of rejecting the null hypothesis 
(no trend) in favor of a trend in the wrong direction. 
We therefore suggest that  power be defined more 
precisely to include only the probability of detecting 
the correct alternate hypothesis, which numerically is 
1 -Pi- Y). 

Using this definition, the power to correctly detect 
trends in harbor porpoise abundance is displayed in 
Table 6 for six different levels of a. The values listed 
under a = 1.0 correspond to the fraction of the time that 
the sign of the covariate is correct, regardless of 
significance level. At  this a-level, the /%error is zero, 
because the null hypothesis of no trend is always re- 
jected in favor of either an increasing or a decreasing 
trend. Both power and y-errors a re  maximized when 
a = 1.0 (see Discussion below). 

At a = 0.05, the ability to detect trends in abundance 
of harbor porpoise is poor (0.07-0.79) for all tested 
trends and numbers of survey years. This is below the 
level of power = 0.80 which has been suggested as a 
minimum standard (Skalski and McKenzie 1982, Peter- 
man and Bradford 1987). Raising a-levels improves the 
ability to detect trends, but also increases the chance 
of detecting a trend in the opposite direction of the true 
trend (y-error). When a = 0.05, y-errors a re  less than 
0.01 for the levels of change tested. In contrast, a t  
a =  0.20, y-errors range from 0 to 0.05, and with 
a = 1.0, y-errors are  between 0 and 0.33. Both 8 and 
y-errors are  reduced with larger trends and more 
survey years. 
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Figure 5 

Graphic illustration of the errors associated with a two-tailed 
test, such as trend analysis. Solid line represents the distribu- 
tion of coefficients for a hypothetical increasing trend. Dashed 
line represents the null distribution of coefficients (when there 
is no trend). Shaded areas represent the three error types, 
u, p, and y (see text). HA, represents an increasing trend, 
HA, represents a decreasing trend, and H, represents no 
trend. 

Discussion 

The number of years necessary to detect trends in har- 
bor porpoise abundance with the techniques described 
above will depend on two things: the rate of change 
to be detected, and the degree of certainty desired. A 
5% annual change will be more difficult to detect than 
a 10% change over the same time period. If a large 
change must occur before the trend is detected, such 
methods may be of limited use in the management of 
populations, and more powerful techniques may be 
required. 

If one does not need the ability to  determine both in- 
creases and decreases, but merely wishes to determine 
whether a population is declining (objective 3, Peter- 
man and Bradford 1987), one-tailed statistical tests can 
be used and will increase statistical power. Alternative- 

Table 6 
Estimated power of the analysis to detect a given trend in 
harbor porpoise abundance correctly, based on 500 random 
data sets for each combination of change and number of survey 
years. Power is defined as 1 - (0 + y). 

No. 
of 

years 

Power associated with given u-error 
YO u =  

annual 
change 0.05 0.10 0.20 0.30 0.40 1.0 

5 
6 
8 

10 

5 
6 
8 

10 

5 
6 
8 

10 

5 
6 
8 

10 

- 10 
- 10 
- 10 
- 10 

+ 10 
+ 10 
+ 10 
+ 10 

-5 
-5 
-5 
-5 

+5 
+5 
+5 
+5 

0.17 0.24 
0.23 0.35 
0.52 0.63 
0.79 0.87 

0.11 0.18 
0.21 0.32 
0.46 0.56 
0.74 0.82 

0.08 0.14 
0.10 0.16 
0.17 0.27 
0.27 0.37 

0.07 0.13 
0.10 0.16 
0.15 0.23 
0.25 0.34 

0.36 0.43 0.52 0.82 
0.52 0.60 0.68 0.90 
0.74 0.82 0.86 0.98 
0.92 0.95 0.97 1.00 

0.29 0.39 0.47 0.78 
0.45 0.54 0.63 0.89 
0.70 0.80 0.85 0.97 
0.88 0.93 0.96 1.00 

0.22 0.28 0.35 0.70 
0.29 0.38 0.44 0.72 
0.42 0.50 0.59 0.84 
0.55 0.65 0.71 0.91 

0.20 0.27 0.34 0.67 
0.25 0.34 0.40 0.73 
0.35 0.45 0.53 0.83 
0.48 0.57 0.66 0.89 

ly, if one is willing to accept a larger probability of in- 
ferring a trend when none is actually present, the 
power to detect trends can be improved by raising the 
level of a used to determine statistical significance. 

It has been suggested that  appropriate levels for a 
and /3 should be determined based on the relative costs 
of committing each type of error (Toft and Shea 1983, 
Rotenberry and Wiens 1985, Hayes 1987, Peterman 
1990b). If the cost of failing to detect a change in abun- 
dance is high relative to the cost of falsely detecting 
a trend for a stable population, then the traditional 
a-level of 0.05 may be inappropriate. In such cases it 
may be preferable to minimize /3-errors by increasing 
a. For  example, in the context of ecological monitor- 
ing, Hinds (1984) suggests that a should be made equal 
to /3. However, it is important to remember that in- 
creasing a when power is low also raises y from vir- 
tually zero to potentially large levels. Rather than 
equalizing a and /3, a tradeoff must be made between 
all three types of error. The magnitude of these errors 
can be estimated using simulations. 

When a is raised to 0.10, ten years of data are  suffi- 
cient to yield power greater than 0.80 and a y-error of 
virtually zero when a 10% annual change is occurring. 
However, this corresponds to a very large total change 
in abundance (236% increase or 61% decrease). A 
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smaller, but still substantial, change of 5% per year 
(total 155% increase or 37% decrease) would have a 
very low chance of being detected a t  this level of a. If 
small changes are  to be detected, then a may have to 
be set higher. 

The most extreme form of raising a-levels is ac- 
complished by considering only the sign of the estimate 
for the covariate coefficient in the ANCOVA, thus set- 
ting a = 1. In this case, the direction, rather than the 
presence, of a trend is tested for. This approach max- 
imizes power, and may be an alternative for situations 
where power cannot be improved through other means 
(Le., increasing the number of surveys conducted). For 
harbor porpoise trend estimation, the roughly equal 
fractions of positive and negative covariate coefficient 
estimates, d (Table 5) indicate that such ari analysis is 
not biased towards detecting either trend direction. 

With a = 1.0, power to detect the correct trend in 
harbor porpoise abundance ranges from 0.67 to 1.00 
for 5-10 survey years and f 5% and f 10% annual 
population changes. Power of 0.80 or higher is achieved 
with a = 1.0 after 5-6 survey years for a 10% annual 
change, or after 8 survey years for a 5% annual change. 
However, since the cost of low power in this case is 
a y-error, power should be higher than when a is set 
a t  the traditional level of 0.05. In this m e ,  eight survey 
years may provide high enough power to detect an 
annual 10% change, whereas even 10 years may not 
yield sufficient power to  detect the smaller 5% annual 
change. 

The magnitude of the y-error when a = 1.0 can be 
demonstrated with Figures 6 and 7. The three curves 
in these figures represent the distribution of covariate 
coefficients, d, for 500 simulated data sets with annual 
changes of (A) - lo%,  (B) 0%, and (C) + 10%. The 
y-error is represented by the area under curves A and 
C which lies on the incorrect side of zero. If this area 
is small or equal to zero, as when 10 annual surveys 
are conducted (Fig. 6), then the analysis will have a high 
probability of detecting the direction of a trend correct- 
ly. However, if the area is large, as when only five 
annual surveys are  conducted (Fig. 7), then the pro- 
cedure will not be able to detect the direction of trends 
accurately. The large degree of overlap between the 
three curves in Figure 7 also reflects the low power 
to detect trends. The dotted line marks the location of 
the covariate coefficient estimate (d) for the 1986-90 
survey data. It is apparent that  the estimate could 
reasonably come from any of the three distributions. 

Setting Q = 1.0 is valid only if the costs of interpreting 
a nonexistent trend in a stable population are  small in 
relation to the costs of failing to detect an existing 
trend. This may be the case if one needs to determine 
whether an existing level of take from a commercially 
exploited population is sustainable. The cost of not 
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Figure 6 
Distribution of covariate estimates (d) representing yearly 
change in abundance (from ANCOVA) for 500 simulations 
each of (A) 10% annual decrease, (B) no change, and (C) 10% 
annual increase in abundance over 10 survey years. Shaded 
area under curves A and C which lies on the incorrect side 
of zero represents the y-error when a = 1.0; here, it is essen- 
tially zero. 

detecting a decreasing trend could be extinction of the 
population and the permanent loss of a resource. On 
the other hand, eliminating or reducing exploitation on 
a stable population which is incorrectly thought to be 
decreasing would cause smaller, short-term costs. In 
the case of marine mammals in the United States, 
existing laws mandate that  all species be maintained 
at sustainable levels, so extinction represents an un- 
acceptably high cost. 

Several assumptions of the above procedures must 
be discussed. The most critical assumption is that  the 
five years of data collected during 1986-90 characterize 
the level of variability expected in a longer time series. 
In addition, the results of the simulations are  only 
accurate if the ANCOVA model is appropriate. The 
results indicate that the chosen model fits the data well 
(P<O.O001). 
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Figure 7 
Distribution of covariate estimates (d) representing yearly 
change in abundance (from ANCOVA) for 500 simulations 
each of (A) 10% annual decrease, (B) no change, and (C)  10% 
annual increase in abundance over five survey years. Shaded 
area under curves A and C which lies on the incorrect side 
of zero represents the 7-error when (I = 1.0. Dashed line marks 
location along the x-axis of the covariate estimate for actual 
1986-90 harbor porpoise data. 

The choice of adding the constant 0.001 in the log- 
transform may a t  first seem a bit odd, but in fact would 
be the same as the more familiar transformation 
ln(x + 1) if relative abundance had been defined as por- 
poise per thousand kilometers, rather than porpoise per 
kilometer. Several other constants were tested to 
determine if the choice of transformation might in- 
fluence the analysis. The stepwise procedure yielded 
the same model in each case. The value 0.001 was 
chosen because it yielded the most normal distribution 
of porpoise per kilometer values (Fig. 3B). 

This approach to trend analysis also assumes that the 
fraction of animals visible from the air does not change 
over time. The probability of detection can be influ- 
enced by many factors, particularly sighting conditions, 
porpoise behavior and group sizes, and observer dif- 

ferences. In our analysis, we controlled for sighting 
conditions by eliminating poor conditions and stratify- 
ing by the remaining ones. Changes in observers be- 
tween years prevented tests of observer differences. 
However, based on previous tests with three years of 
data, they are  not believed to be significant (Forney 
e t  al. 1989). 

Harbor porpoise behavior, including frequencies of 
active versus inactive behaviors and mean group sizes, 
has been shown to vary by area and season (Calam- 
bokidis e t  al. 1990, Taylor and Dawson 1984, Sekiguchi 
1987). To control for these potential differences, the 
surveys followed the same transect lines during the 
same season (autumn) each year. Nevertheless, group 
sizes in 1989 were significantly different than those in 
1987 and 1988 (Kolmogorov-Smirnov test of cumulative 
distributions, P = 0.02 for both tests). The difference 
appears to be due to a larger percentage of groups con- 
taining three or more animals. 

If group size affects harbor porpoise sightability, a 
substantial change in group size distribution could bias 
the trend analysis, either obscuring a present trend or 
creating a false one. To test  for this possibility, the 
ANCOVA was repeated excluding the data for 1989. 
The overall results were similar, with the same final 
model, similar parameters, and no significant yearly 
trend (P = 0.98). We conclude that this slight difference 
in group sizes is not likely to have affected our analysis. 

Conclusion 

The use of simulations allows researchers to estimate 
appropriate error levels for the analysis of surveys 
of animal populations. The ANCOVA model we used 
suggests that  no trend in harbor porpoise abundance 
occurred between 1986 and 1990. However, our simula- 
tions show that the power of this model to detect trends 
using conventional a-levels of 0.05 or 0.10 is poor. 
Therefore, i t  is more correct to  say that  we could not 
reject the null hypothesis of no trend due to insufficient 
power. 

Power can be increased by raising the acceptable 
level of a. If only the sign of the coefficient for the 
covariate year is used to determine the direction of a 
trend, regardless of significance level, then the 
ANCOVA has a high probability of detecting trends 
correctly, particularly with eight or  more annual sur- 
veys. However, a t  higher a levels, the probability of 
detecting a change in the wrong direction (y-error) 
increases. 

When making decisions, there a re  distinct trade-offs 
between the error types which must be evaluated. In 
trend analysis, power should be defined as 1 - @ + y )  
to include only detection of a trend in the correct direc- 
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tion. If the cost of making an a-error, Le., falsely con- 
cluding that a stable population is increasing or de- 
creasing, is low, u can be increased to increase power. 
However, attention must be paid to both fl and y-errors 
as power increases. If y is relatively large, then power 
should be greater than the previously suggested value 
of 0.80. 

Additional surveys improve the power to detect 
trends and reduce y-errors. Furthermore, if future 
research can identify and record additional factors af- 
fecting observed abundances, such as productivity of 
the area surveyed (Smith e t  al. 1986) or ocean tem- 
perature patterns (Reilly 1990), this may reduce the 
variability in the model and increase power. 

Future research is planned to continue surveys and 
search for alternative methods of analyzing these data. 
The traditional approach to making statistical inference 
regarding trends has been hypothesis testing with a 
null hypothesis of no change. As seen in this paper, this 
is a complicated approach. One must first decide what 
levels of u, fl, and (now) y one is willing to tolerate. The 
range of these errors is dependent on many factors, 
including the level of change to be detected, and the 
number of years surveyed. Once inference is made, it 
cannot be presented to others without reference to this 
bewildering array of decision criteria. 

Bayesian statistics (Iversen 1984, Press 1989) may 
offer an  alternative approach to  statistical inference, 
circumventing many of the complications discussed 
above. Bayesian methods would allow the calculation 
of the probability distribution of possible trends given 
the observed data. From this distribution it would be 
possible to directly calculate the probability that the 
population is increasing or decreasing. Such methods 
may be of more value than statistical test results which 
are  highly dependent on the chosen error levels. 
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